# Earth models ## Reference model See [EMC-ReferenceModels](https://ds.iris.edu/ds/products/emc-referencemodels/) to access references models. ```{toctree} :maxdepth: 1 ak135 iasp91 prem ``` - [STW105](https://ds.iris.edu/ds/products/emc-stw105/) ## Global 3D models See [EMC-EarthModels](https://ds.iris.edu/ds/products/emc-earthmodels/) to access 3D models. Some latest models are listed as following. ### Velocity model - [GLAD-M25](https://ds.iris.edu/ds/products/emc-glad-m25/):GLAD-M25 is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor GLAD-M15. The 1-D reference model is [STW105](https://ds.iris.edu/ds/products/emc-stw105/). :::{admonition} Citation :class: seealso Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Podhorszki, N., Pugmire, D., 2020. Global adjoint tomography—model glad-m25. Geophysical Journal International 223, 1–21, [doi.org/10.1093/gji/ggaa253](https://doi.org/10.1093/gji/ggaa253). ::: - [SPiRaL_1.4](https://ds.iris.edu/ds/products/emc-spiral_14/)Vs and Vp velocities with 3-D variations in vertical transverse isotropy (Includes: Vsv, Vsh, Vpv, Vph, eta) :::{admonition} Citation :class: seealso Simmons N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp (2021). SPiRaL: A multi-resolution global tomography model of seismic wave speeds and radial anisotropy variations in the crust and mantle, Geophys. J. Int., 227(2), 1366-1391, [doi.org/10.1093/gji/ggab277](https://doi.org/10.1093/gji/ggab277) ::: ### Anisotropic model - [SAVANI_US](https://ds.iris.edu/ds/products/emc-savani_us/): A radially anisotropic whole mantle global model with high data and node density in the contiguous US. :::{admonition} Citation :class: seealso Porritt, R. W., T. W. Becker, L. Boschi, and L. Auer, (2021) Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets, Geophysical Journal International, ggab185, [doi.org/10.1093/gji/ggab185](https://doi.org/10.1093/gji/ggab185) ::: - [3D2018_08Sv](https://ds.iris.edu/ds/products/emc-3d2018_08sv/): SV wave velocity, Azimuthal anisotropy and peak to peak anisotropy. :::{admonition} Citation :class: seealso Debayle, E., F. Dubuffet, and S. Durand (2016), An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43, [doi.org/10.1002/2015GL067329](https://doi.org/10.1002/2015GL067329). ::: ### Crustal thickness - [CRUST1.0](https://ds.iris.edu/ds/products/emc-crust10/): A 1-by-1 Degree Global Model of Earth’s Crust. See [Raw link](https://igppweb.ucsd.edu/~gabi/crust1.html) in detail. :::{admonition} Citation :class: seealso Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013. ::: ### Lithospheric Thickness - [LITHO1.0](https://ds.iris.edu/ds/products/emc-litho10/): An updated crust and lithospheric model of the Earth. See [raw link](https://igppweb.ucsd.edu/~gabi/litho1.0.html) in detail. :::{admonition} Citation :class: seealso Pasyanos, M.E., T.G. Masters, G. Laske, and Z. Ma (2014). LITHO1.0: An updated crust and lithospheric model of the Earth, J. Geophys. Res., 119 (3), 2153-2173, [doi.org/10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626). ::: ### Attenuation model - [DBRD_NATURE2020](https://ds.iris.edu/ds/products/emc-dbrd_nature2020/): 3-D Tomography Models of Upper Mantle Shear velocity, Attenuation and Melt content. :::{admonition} Citation :class: seealso Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020). [doi.org/10.1038/s41586-020-2809-4](https://doi.org/10.1038/s41586-020-2809-4) ::: ## 3D Model for East Asia and China ### Upper Mantle scale - [FWEA18](https://ds.iris.edu/ds/products/emc-fwea18/): Radial anisotropic (in the uppermost mantle) P and S velocities of East Asia. :::{admonition} Citation :class: seealso Tao K., Grand S. P. and Niu F. N. (2018), Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography, Geochemistry, Geophysics, Geosystems. [doi.org/10.1029/2018GC007460](https://doi.org/10.1029/2018GC007460). ::: - [USTClitho2.0](https://github.com/ShouchengHan/USTClitho2.0): 3-D P- and S-wave velocity models of the crust and uppermost mantle for continental China. :::{admonition} Citation :class: seealso Han S, Zhang H, Xin H, et al. USTClitho2. 0: Updated unified seismic tomography models for Continental China lithosphere from joint inversion of body‐wave arrival times and surface‐wave dispersion data[J]. Seismological Society of America, 2022, 93(1): 201-215. [doi.org/10.1785/0220210122](https://doi.org/10.1785/0220210122) ::: - [CU-Boulder Dispersion Maps](http://ciei.colorado.edu/DispMaps/): China/Tibet Surface Wave Dispersion Maps. Phase velocity maps in E. Asia including China and periphery regions from 8-70 sec period for Rayleigh wave phase velocities and 8-50 sec period for Rayleigh wave group velocities.. Maps derive from ambient noise tomography and earthquake tomography. :::{admonition} Citation :class: seealso Shen W, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979. [doi.org/10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175) ::: ### Crustal scale - [Cheng et al., 2022](http://qiniudns.cgrm-database.com/modfile/CrustalThiChina.txt): Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis :::{admonition} Citation :class: seealso Cheng S, Xiao X, Wu J, et al. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis[J]. Geophysical Journal International, 2022, 228(3): 1731-1749. [doi.org/10.1093/gji/ggab433](https://doi.org/10.1093/gji/ggab433) ::: - [Xiao et al., 2021](http://qiniudns.cgrm-database.com/Shallow3DSeismicStructure.tar): Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function :::{admonition} Citation :class: seealso Xiao X, Cheng S, Wu J, et al. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function[J]. Geophysical Journal International, 2021, 225(2): 998-1019. [doi.org/10.1093/gji/ggab022](https://doi.org/10.1093/gji/ggab022) ::: ## Southeastern Tibet model - [SWChinaCVM1.0](https://github.com/liuyingustc/SWChinaCVM): 3-D P- and S-wave community velocity model of the crust and uppermost mantle in southwest China. :::{admonition} Citation :class: seealso Liu Y, Yao H, Zhang H, et al. The community velocity model V. 1.0 of southwest China, constructed from joint body‐and surface‐wave travel‐time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987. [doi.org/10.1785/0220200318](https://doi.org/10.1785/0220200318) ::: - {download}`Han et al., 2022 <../_static/MMC3.txt>`: Azimuthal anisotropic S-wave velocity in the SE Tibet Plateau. :::{admonition} Citation :class: seealso Han C, Huang Z, Hao S, et al. Restricted lithospheric extrusion in the SE Tibetan Plateau: Evidence from anisotropic Rayleigh-wave tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117837. [doi.org/10.1016/j.epsl.2022.117837](https://doi.org/10.1016/j.epsl.2022.117837) ::: - {download}`SETPM <../_static/SETPM.dat>`: Moho depth in the SE Tibet revealed by 3D common conversion point stacking of receiver functions. :::{admonition} Citation :class: seealso Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117. [doi.org/10.1029/2019JB018117](https://doi.org/10.1029/2019JB018117) :::