Earth models#

Reference model#

See EMC-ReferenceModels to access references models.

Global 3D models#

See EMC-EarthModels to access 3D models. Some latest models are listed as following.

Velocity model#

  • GLAD-M25:GLAD-M25 is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor GLAD-M15. The 1-D reference model is STW105.

    Citation

    Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Podhorszki, N., Pugmire, D., 2020. Global adjoint tomography—model glad-m25. Geophysical Journal International 223, 1–21, doi.org/10.1093/gji/ggaa253.

  • SPiRaL_1.4Vs and Vp velocities with 3-D variations in vertical transverse isotropy (Includes: Vsv, Vsh, Vpv, Vph, eta)

    Citation

    Simmons N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp (2021). SPiRaL: A multi-resolution global tomography model of seismic wave speeds and radial anisotropy variations in the crust and mantle, Geophys. J. Int., 227(2), 1366-1391, doi.org/10.1093/gji/ggab277

Anisotropic model#

  • SAVANI_US: A radially anisotropic whole mantle global model with high data and node density in the contiguous US.

    Citation

    Porritt, R. W., T. W. Becker, L. Boschi, and L. Auer, (2021) Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets, Geophysical Journal International, ggab185, doi.org/10.1093/gji/ggab185

  • 3D2018_08Sv: SV wave velocity, Azimuthal anisotropy and peak to peak anisotropy.

    Citation

    Debayle, E., F. Dubuffet, and S. Durand (2016), An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43, doi.org/10.1002/2015GL067329.

Crustal thickness#

  • CRUST1.0: A 1-by-1 Degree Global Model of Earth’s Crust. See Raw link in detail.

    Citation

    Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013.

Lithospheric Thickness#

  • LITHO1.0: An updated crust and lithospheric model of the Earth. See raw link in detail.

    Citation

    Pasyanos, M.E., T.G. Masters, G. Laske, and Z. Ma (2014). LITHO1.0: An updated crust and lithospheric model of the Earth, J. Geophys. Res., 119 (3), 2153-2173, doi.org/10.1002/2013JB010626.

Attenuation model#

  • DBRD_NATURE2020: 3-D Tomography Models of Upper Mantle Shear velocity, Attenuation and Melt content.

    Citation

    Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020). doi.org/10.1038/s41586-020-2809-4

3D Model for East Asia and China#

Upper Mantle scale#

  • FWEA18: Radial anisotropic (in the uppermost mantle) P and S velocities of East Asia.

    Citation

    Tao K., Grand S. P. and Niu F. N. (2018), Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography, Geochemistry, Geophysics, Geosystems. doi.org/10.1029/2018GC007460.

  • USTClitho2.0: 3-D P- and S-wave velocity models of the crust and uppermost mantle for continental China.

    Citation

    Han S, Zhang H, Xin H, et al. USTClitho2. 0: Updated unified seismic tomography models for Continental China lithosphere from joint inversion of body‐wave arrival times and surface‐wave dispersion data[J]. Seismological Society of America, 2022, 93(1): 201-215. doi.org/10.1785/0220210122

  • CU-Boulder Dispersion Maps: China/Tibet Surface Wave Dispersion Maps.

    Phase velocity maps in E. Asia including China and periphery regions from 8-70 sec period for Rayleigh wave phase velocities and 8-50 sec period for Rayleigh wave group velocities.. Maps derive from ambient noise tomography and earthquake tomography.

    Citation

    Shen W, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979. doi.org/10.1093/gji/ggw175

Crustal scale#

  • Cheng et al., 2022: Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis

    Citation

    Cheng S, Xiao X, Wu J, et al. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis[J]. Geophysical Journal International, 2022, 228(3): 1731-1749. doi.org/10.1093/gji/ggab433

  • Xiao et al., 2021: Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function

    Citation

    Xiao X, Cheng S, Wu J, et al. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function[J]. Geophysical Journal International, 2021, 225(2): 998-1019. doi.org/10.1093/gji/ggab022

Southeastern Tibet model#

  • SWChinaCVM1.0: 3-D P- and S-wave community velocity model of the crust and uppermost mantle in southwest China.

    Citation

    Liu Y, Yao H, Zhang H, et al. The community velocity model V. 1.0 of southwest China, constructed from joint body‐and surface‐wave travel‐time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987. doi.org/10.1785/0220200318

  • Han et al., 2022: Azimuthal anisotropic S-wave velocity in the SE Tibet Plateau.

    Citation

    Han C, Huang Z, Hao S, et al. Restricted lithospheric extrusion in the SE Tibetan Plateau: Evidence from anisotropic Rayleigh-wave tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117837. doi.org/10.1016/j.epsl.2022.117837

  • SETPM: Moho depth in the SE Tibet revealed by 3D common conversion point stacking of receiver functions.

    Citation

    Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117. doi.org/10.1029/2019JB018117