Earth models#

Reference model#

See EMC-ReferenceModels to access references models.

Global 3D models#

See EMC-EarthModels to access 3D models. Some latest models are listed as following.

Velocity model#

  • GLAD-M25:GLAD-M25 is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor GLAD-M15. The 1-D reference model is STW105.


    Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Podhorszki, N., Pugmire, D., 2020. Global adjoint tomography—model glad-m25. Geophysical Journal International 223, 1–21,

  • SPiRaL_1.4Vs and Vp velocities with 3-D variations in vertical transverse isotropy (Includes: Vsv, Vsh, Vpv, Vph, eta)


    Simmons N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp (2021). SPiRaL: A multi-resolution global tomography model of seismic wave speeds and radial anisotropy variations in the crust and mantle, Geophys. J. Int., 227(2), 1366-1391,

Anisotropic model#

  • SAVANI_US: A radially anisotropic whole mantle global model with high data and node density in the contiguous US.


    Porritt, R. W., T. W. Becker, L. Boschi, and L. Auer, (2021) Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets, Geophysical Journal International, ggab185,

  • 3D2018_08Sv: SV wave velocity, Azimuthal anisotropy and peak to peak anisotropy.


    Debayle, E., F. Dubuffet, and S. Durand (2016), An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43,

Crustal thickness#

  • CRUST1.0: A 1-by-1 Degree Global Model of Earth’s Crust. See Raw link in detail.


    Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013.

Lithospheric Thickness#

  • LITHO1.0: An updated crust and lithospheric model of the Earth. See raw link in detail.


    Pasyanos, M.E., T.G. Masters, G. Laske, and Z. Ma (2014). LITHO1.0: An updated crust and lithospheric model of the Earth, J. Geophys. Res., 119 (3), 2153-2173,

Attenuation model#

  • DBRD_NATURE2020: 3-D Tomography Models of Upper Mantle Shear velocity, Attenuation and Melt content.


    Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020).

3D Model for East Asia and China#

Upper Mantle scale#

  • FWEA18: Radial anisotropic (in the uppermost mantle) P and S velocities of East Asia.


    Tao K., Grand S. P. and Niu F. N. (2018), Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography, Geochemistry, Geophysics, Geosystems.

  • USTClitho2.0: 3-D P- and S-wave velocity models of the crust and uppermost mantle for continental China.


    Han S, Zhang H, Xin H, et al. USTClitho2. 0: Updated unified seismic tomography models for Continental China lithosphere from joint inversion of body‐wave arrival times and surface‐wave dispersion data[J]. Seismological Society of America, 2022, 93(1): 201-215.

  • CU-Boulder Dispersion Maps: China/Tibet Surface Wave Dispersion Maps.

    Phase velocity maps in E. Asia including China and periphery regions from 8-70 sec period for Rayleigh wave phase velocities and 8-50 sec period for Rayleigh wave group velocities.. Maps derive from ambient noise tomography and earthquake tomography.


    Shen W, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.

Crustal scale#

  • Cheng et al., 2022: Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis


    Cheng S, Xiao X, Wu J, et al. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis[J]. Geophysical Journal International, 2022, 228(3): 1731-1749.

  • Xiao et al., 2021: Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function


    Xiao X, Cheng S, Wu J, et al. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function[J]. Geophysical Journal International, 2021, 225(2): 998-1019.

Southeastern Tibet model#

  • SWChinaCVM1.0: 3-D P- and S-wave community velocity model of the crust and uppermost mantle in southwest China.


    Liu Y, Yao H, Zhang H, et al. The community velocity model V. 1.0 of southwest China, constructed from joint body‐and surface‐wave travel‐time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987.

  • Han et al., 2022: Azimuthal anisotropic S-wave velocity in the SE Tibet Plateau.


    Han C, Huang Z, Hao S, et al. Restricted lithospheric extrusion in the SE Tibetan Plateau: Evidence from anisotropic Rayleigh-wave tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117837.

  • SETPM: Moho depth in the SE Tibet revealed by 3D common conversion point stacking of receiver functions.


    Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117.