Earth models#
Reference model#
See EMC-ReferenceModels to access references models.
Global 3D models#
See EMC-EarthModels to access 3D models. Some latest models are listed as following.
Velocity model#
GLAD-M25:GLAD-M25 is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor GLAD-M15. The 1-D reference model is STW105.
Citation
Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Podhorszki, N., Pugmire, D., 2020. Global adjoint tomography—model glad-m25. Geophysical Journal International 223, 1–21, doi.org/10.1093/gji/ggaa253.
SPiRaL_1.4Vs and Vp velocities with 3-D variations in vertical transverse isotropy (Includes: Vsv, Vsh, Vpv, Vph, eta)
Citation
Simmons N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp (2021). SPiRaL: A multi-resolution global tomography model of seismic wave speeds and radial anisotropy variations in the crust and mantle, Geophys. J. Int., 227(2), 1366-1391, doi.org/10.1093/gji/ggab277
Anisotropic model#
SAVANI_US: A radially anisotropic whole mantle global model with high data and node density in the contiguous US.
Citation
Porritt, R. W., T. W. Becker, L. Boschi, and L. Auer, (2021) Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets, Geophysical Journal International, ggab185, doi.org/10.1093/gji/ggab185
3D2018_08Sv: SV wave velocity, Azimuthal anisotropy and peak to peak anisotropy.
Citation
Debayle, E., F. Dubuffet, and S. Durand (2016), An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43, doi.org/10.1002/2015GL067329.
Crustal thickness#
Lithospheric Thickness#
LITHO1.0: An updated crust and lithospheric model of the Earth. See raw link in detail.
Citation
Pasyanos, M.E., T.G. Masters, G. Laske, and Z. Ma (2014). LITHO1.0: An updated crust and lithospheric model of the Earth, J. Geophys. Res., 119 (3), 2153-2173, doi.org/10.1002/2013JB010626.
Attenuation model#
DBRD_NATURE2020: 3-D Tomography Models of Upper Mantle Shear velocity, Attenuation and Melt content.
Citation
Debayle, E., Bodin, T., Durand, S. et al. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020). doi.org/10.1038/s41586-020-2809-4
3D Model for East Asia and China#
Upper Mantle scale#
FWEA18: Radial anisotropic (in the uppermost mantle) P and S velocities of East Asia.
Citation
Tao K., Grand S. P. and Niu F. N. (2018), Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography, Geochemistry, Geophysics, Geosystems. doi.org/10.1029/2018GC007460.
USTClitho2.0: 3-D P- and S-wave velocity models of the crust and uppermost mantle for continental China.
Citation
Han S, Zhang H, Xin H, et al. USTClitho2. 0: Updated unified seismic tomography models for Continental China lithosphere from joint inversion of body‐wave arrival times and surface‐wave dispersion data[J]. Seismological Society of America, 2022, 93(1): 201-215. doi.org/10.1785/0220210122
CU-Boulder Dispersion Maps: China/Tibet Surface Wave Dispersion Maps.
Phase velocity maps in E. Asia including China and periphery regions from 8-70 sec period for Rayleigh wave phase velocities and 8-50 sec period for Rayleigh wave group velocities.. Maps derive from ambient noise tomography and earthquake tomography.
Citation
Shen W, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979. doi.org/10.1093/gji/ggw175
Crustal scale#
Cheng et al., 2022: Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis
Citation
Cheng S, Xiao X, Wu J, et al. Crustal thickness and Vp/Vs variation beneath continental China revealed by receiver function analysis[J]. Geophysical Journal International, 2022, 228(3): 1731-1749. doi.org/10.1093/gji/ggab433
Xiao et al., 2021: Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function
Citation
Xiao X, Cheng S, Wu J, et al. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function[J]. Geophysical Journal International, 2021, 225(2): 998-1019. doi.org/10.1093/gji/ggab022
Southeastern Tibet model#
SWChinaCVM1.0: 3-D P- and S-wave community velocity model of the crust and uppermost mantle in southwest China.
Citation
Liu Y, Yao H, Zhang H, et al. The community velocity model V. 1.0 of southwest China, constructed from joint body‐and surface‐wave travel‐time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987. doi.org/10.1785/0220200318
Han et al., 2022
: Azimuthal anisotropic S-wave velocity in the SE Tibet Plateau.Citation
Han C, Huang Z, Hao S, et al. Restricted lithospheric extrusion in the SE Tibetan Plateau: Evidence from anisotropic Rayleigh-wave tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117837. doi.org/10.1016/j.epsl.2022.117837
SETPM
: Moho depth in the SE Tibet revealed by 3D common conversion point stacking of receiver functions.Citation
Xu M, Huang Z, Wang L, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018117. doi.org/10.1029/2019JB018117